M. Math. First Year
Complex Analysis
Supplementary Midsemestral Exam
Instructor : B. Sury
28th February 2024

Q 1. Find the image of the circle $|z|=R$ under the transformation $z \mapsto$ $\frac{1}{2}(z+1 / z)$. Do this separately for $R>1$ and $R=1$.
Hint. The answers may be an ellipse or a line segment.

Q 2. Let u be a harmonic function on an open disc $D \subset \mathbb{C}$. Recall that this means that the 2 nd order partial derivatives of u with respect to the variables x, y are continuous and $u_{x x}+u_{y y}=0$. If u is non-constant, then prove that it cannot attain a maximum at a point of D.
Hint. Prove, and use the mean-value property.

OR

Q 2. Let f be an entire function satisfying $|f(z)| \leq \log (1+|z|)$ for all z. Prove that f must be a constant function.
Hint. Same idea as in Liouville's theorem, but applied to f^{\prime} at a point.

Q 3. If f is a continuous function on \mathbb{C} such that its restrictions to the subsets $\{z \in \mathbb{C}: x<0\}$ and $\{z \in \mathbb{C}: x>0\}$ are holomorphic, then show that f is entire.
Hint. Consider integrals over rectangles and, use Morera's theorem.

OR

Q 3. Let $f(z)=u(z)+i v(z)$ be holomorphic on the open unit disc D. If $u(0)= \pm v(0)$, prove that for all $0<t<1$, we have $\int_{0}^{2 \pi} u\left(t e^{i \theta}\right)^{2} d \theta=$ $\int_{0}^{2 \pi} v\left(t e^{i \theta}\right)^{2} d \theta$.
Hint. Note $\Re f(0)^{2}=u(0)^{2}-v(0)^{2}$; and use Cauchy's formula for a suitable function on a suitable path.

Q 4. Prove that $\int_{C_{r}} \frac{d z}{z^{2} \sin (z)} \rightarrow 0$ as $r \rightarrow \infty$, where C_{r} is the boundary of the square $|x|,|y| \leq(2 r+1) \pi / 2$. Using this, and the residue theorem, deduce that $\sum_{n \geq 1}(-1)^{n-1} / n^{2}=\pi^{2} / 12$.

OR

Q 4. Let f be holomorphic on a domain D, and satisfies $\left|f(z)^{2}-1\right|<1$ for all $z \in D$. Show that $\Re(f)$ does not vanish on D, and has the same sign throughout D.

Q 5.Find a conformal map from $D \cap\{z: \Re(z)>0\}$ onto D, where D is the open unit disc.
Hint. Map the domain onto the intersection of D with the upper half-plane; follow it up by mapping onto the first quadrant, and take the square map.

OR

Q 5. Let f be an entire function such that its restriction to \mathbb{R} has real, non-negative values. Show that each REAL zero of f must have even order.

Q 6. For the Taylor series of the function $\frac{1}{1+z^{2}+z^{4}+z^{6}+z^{8}+z^{10}}$ around $z=1$, determine the radius R of convergence.
Hint. R is the distance from 1 to the closest singularity.

OR

Q 6. If $p(z), q(z)$ are polynomials with $\operatorname{deg}(p)<\operatorname{deg}(q)+1$, and if, $q(z)$ has simple zeroes at z_{1}, \cdots, z_{n}, show that for any large enough circle C, the integral $\int_{C} \frac{p(z)}{q(z)} d z=0$. Deduce that $\sum_{i=1}^{n} p\left(z_{i}\right) / q^{\prime}\left(z_{i}\right)=0$.

